

11th Southampton Course for Therapists and Surgeons

Etathophysiology of Stiffness

Speaker: Mr Jason Wong Academic Consultant in Plastic Surgery Plastic Surgery Research Group, Blond McIndoe Laboratories, University of Manchester, UK

Definitions

Stiffness is the rigidity of an object — the extent to which it resists deformation in response to an applied force.

The complementary concept is **flexibility** or pliability: the more flexible an object is, the less stiff it is.

Skin problem

Images by Sammut/ Langer

Joint stiffness may be either the symptom of pain on moving a joint, the symptom of loss of range of motion or the physical sign of reduced range of motion.

- Pain on movement is commonly caused by osteoarthritis, often in quite minor degrees, and other forms of arthritis. It may also be caused by injury or overuse and rarely by more complex causes of pain such as infection or neoplasm. The range of motion may be normal or limited by pain. "Morning stiffness" pain which eases up after the joint has been used, is characteristic of rheumatoid arthritis.
- Loss of motion (symptom): the patient notices that the joint (or many joints) do not move as far as they used to or need to. Loss of motion is a feature of more advanced stages of arthritis including osteoarthritis, rheumatoid arthritis and ankylosing spondylitis.

Stiffness in upper limb

- Tendons/ ligaments
- Skin
- Joints
- Fascia
- Muscle
- Neurological

Rheumatoid arthritis

Infection

Surgery

Trauma

Gout

Psoriaratic arthritis

Compartment Syndrome

Scleroderma

Osteoarthritis

What is the unifying pathogenesis?

The neglected tissue

Microvacuolar system

- AKA Areolar tissue, superficial fascia, reticular tissue, loose connective tissue
- Microvacuolar system surrounds all moving structures within the body providing dynamic structural support and glide

Guimberteau et al 2010 JHSE

Highly hydrophilic High GAG content

Triggers for fibrosis

- Injury- Trauma, Surgical, Thermal
- Infection
- Immunological causes
- Ischaemia/ infarction/ Reperfusion
- Drugs

Fibrosis

- The microvacuolar tissue is highly susceptible to damage during inflammation from the increased vascular permeability, but also its sponge-like composition
- The tissue acts as an active reservoir for interstitial fluid and becomes waterlogged
- Oedema and overall injury to the microvacuolar tissue causes scarring, fibrosis and adhesions and the tissue becomes inelastic, swollen and more vulnerable to further trauma

When the microvacuolar becomes fibrosed

- Gliding planes become scarred
- Stiff fibrotic tissue surrounding everything that moves

Key ingredients to fibrosis

All tissues have a skin

Taylor 2011 Matrix Bio

Inflammatory cells

Wynn and Ramalingham 2012 Nature

Injury Response

Normal

Sutured

Live Dead Staining Green =Living Red =Dead

Avulsed Wong et al 2010 Matrix Bio

Abrasion

Wynn and Ramalingham 2012 Nature

Wong and Peck 2014 PRS

Epithelial to mesenchymal transformation

Wynn and Ramalingham 2012

Fibroblasts on a fibrin gel

Sawhney et al, J.Cell Biol 2002

Collagen Assembly

Siani and Tirelli 2014

Kapacee et al 2010 Matrix Biology

What about the systemic response?

Scanning electron microscopy of the injured tendon. A simple partial laceration through 50% of the tendons diameter under operating microscope guidance. This was used as a model for healing.

Control

Day I

Day 112

Myofibroblasts

Figure 5: The potential roles of macrophages in tissue fibrosis.

Gene expression

Collagen type 1 Collagen type 3

Figure 30: The fold regulation of *Col1a2* (A) and *Col3a1* (B) between 1 and 4 weeks. No error bars are displayed as one assay was performed.

Atomic force Microscopy

Nanoindentation

Subcutaneous Tissue

Figure 26: Mean young's modulus of the subcutaneous tissue in the cast model. Error bars denote 1 SEM (* = $P_{<0.05}$)

So how does fibrosis / adhesions form?

Tendon

Subcutaneous Tissue

Inflammatory cells Macrophages Adhesion Fibroblasts

American Journal of Pathology 2009

Current Work

Ex vivo perfusion

Figure 1. Schematic of the upper extremity perfusion device used in the planning stages of development.

Clinical observations

IDEAS

Take observation to the lab

MODELS

Take it back to the patient

RAPID or Traditional TRANSLATION

Acknowledgments

Fibrosis Work

Richard Wong Parviz Sorooshian Chandy Chhina

Tendon Work

Karl Kadler

Funding UHSM MRC DPFS Wellcome Trust Academy of Medical Sciences Royal College of Surgeons Kuwait Government ESPRC/MRC CDT

Limb Perfusion

James Fildes Kavit Amin

